Positive Definite and Unimodal Gauss-Hermite Expansion
of Probability Density Functions

Wolfgang Freude

Summary - Zusammenfassung

. The approximation of Gaussian-like probablhty density
" .functions (p.d.f} by Gauss-Hermite series of Gram-
" Chartlier and Edgeworth type, or by a Corpish-Fisher
" expansion frequently violates two constraints: the curves
“should be positive definite, and unimodal. A new- stan-
. dardization allows the choice of the basic Gauss-Herrmite
gystem such that these diffieulties are avoided. If the p.d.L
is given, the expansion coefficients of the approximating
_ series may be computed by a relative least-squares error
‘fit; usually, the two p.d.[. consiraints are not violated. If
the moments are known, the expansion coefficients are
-computed by a matrix inversion, where an iterative pro-
‘cedure adjusts the standardizing parameters according to
the two p.d.[. constraints. The method is compared to the

" approximation by a Pearson [unction.

Positiv-definite und unimodale
GavB-Heriiite-Entwicklung
vou Wahrschemllchkeitsdlchte-Funktlonen

Die Niiherung von gauBahnhchen Wahrscheinlichkeits-
dichte-Funktionen {p.d.f) mit Gaub- Hetmite-Reihen
vom .Gram-Charlier- und Edgeworth-Typ oder durch
eine Cornish-Fisher-Entwicklung verletzt hiuofig zwei
Nebenbedingungen: die Kurven sollten positiv-definit
und unimodal sein, Eine-neue Standardisierung vermei-
det diese Sehwierigkeit durch eine geelgnete Wah] des
GauB-Hermite-Entwicklungssystems. Ist die p.d.f. be-
kannt, so kann man die Entwicklungskoeffizienten der
Reihe durch eine Anpassung mit der Methode der klein-
sten Quadrate berechnen; fiir gewohnlich werden die Ne-
benbedingungen nicht verletzt. Sind dic Momente be-
kannt, dasit koénnen die Entwicklungskoeffizienten durch
eing Matrix-Inversion bereshnet werden, wobei ein Ttera-
tionsprozed die Standardisierungsparameter so anpaBt,
dab die Nebenbedingungen erfiillt werden. Das Verfahren
wird mit der Niherung durch. eine Pearson-Funktion
verglichen.

1.. Introduction

When simulating coherent optical receivers numeri-
cally, it is often the case that in calculating the bit error
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probability BER = | p_(x)dx either the probability
density function (p.d.L) p.(x) of the received signal x is
known as a numerical table, or the moments of the
signal may be estimated. In both cases it is useful to
reconstruct an analytical formula for the p.d.f with
the constraints that it must be non-negative and with
only one maximum, iec., positive definite and unimo-
dal.
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In the past 40 years there have been numerous at-
tempts to approximate p.d.f.'s in terms of the moments
of the process. Special attention was paid to Gaussian-
like p.d.f, which where either represented by Gauss-
Hermite series of the Gram-Charlier and Edgeworth
type, or, for the Cornish-Fisher expansion, by approx-
imating the standardized argument z with normai dis-
tribution funclion P,(z) by a Hermite series of the
non-normally distributed argument x of the actual
distribution P, (x). As a reference, see, for example,
[1, Sections 17.6-17.7], [2], [3, Sections 26.2.47-
26.2.48, 269 example 6], [4]. Closely related to the
Gram-Charlier and Edgeworth expansions is the sad-
dlepoint approximation 5], which in effect differs in
the standardization of the random variable.

For all of these approximations the fundamental
{Gauss-)Hermite function system was uniguely de-
fined by the very moments of the process, so it hap-
pened not infrequently that the two basic constraints
of a p.d.f. were violated. As no degree of freedom was
left, one had to take or to leave whatever the method
presented for the chosen expansion type and the given
process. Especially for long-tailed p.d.f, or for the cal-
culation of very low error probabllmes, well-behaved
representations of p.d.f. are requested.

The im portance of the problem has been recogmzed
long since in connection with the expansions of Gram-
Charlier and Edgeworth. An early remark is found in
[6]. First in [7], later on in [8], [9] moment regions were
calculated (for the first four moments only) in which
the constraints above were violated; also, there are
notes in [10], [11].

A different approach is to approximate a-p.df. by
the family of the p.d.f’s associated with the Pearson
distributions [12, .Section_ §]..e.g, the beta-density
function. The parameters of these p.d.f. may be calcu-
lated from the moments. For a specified region of
moments the functions are positive definite and uni-
modal. The relations are pubiished for a set of four
moments.

No further attempts to tackle the problem are
known to the author. The reason for this deficiency
might be that the statistics community lacked interest
in esoteric Gaussian-like p.d.f, tail regions where for
optical coherent receivers [13] symbol transmission
error probabilities as fow as 10 ° are to be caleulated.

The present paper discusses a Gauss-Hermite ap-
proximation, and proposes a different standardlzatlon
of the random variable with two or three process-
independent parameters, which may be varied in an
iterative manner to find a positive definite and unimo-
dai representation out of the infinite manifold of den-
sity functions with a given finite number of identical
moments.

For analytically. or numerically given pd.f. a rela-
tive least-squares fit (r.ls.f) is applied to compute the
expansion coeflicients of a Gauss-Hermite series, a
method which allows a simple weighting of the avail-
able data, and needs not the problematic direct calcu-
lation of moments [10], [11]. If the moments of the
process can be estimated, a method is proposed to
reconstruct the p.d.f. of the process as a Gauss-Her-

mite series by a simple matrix inversion. The tech-
niques described are demonstrated for non-Gaussian
p.d.f. and compared to existing methods.

2. Relative Least-Squares Error Fit

A statistical process with p.d.f p.(x) has an outcome
which is described by the random variable x. If 4} and
o are mean and standard deviation of the process, the
corresponding standardized random variable X' is
usually defined by

=(x—pi)o. 1

Here, a different standardization is chosen as was al-
ready done in characterizing single-mode optical
waveguides [14], [15], where the (not yet determined)
paramcters x, and y resemble y) and o™, respec-
tively,

X =y{x—x0). )

Consequently; a series expansion of p,(x) in terms of
the Gauss—Hermlte function system R, with the

| parameters. X oy Ky and the Hcrmltc functmns H, [3],

may be written as

N +m

px(x)% Z can—i(X)/ I ;‘- can—l(X)dxz
n=1 —mox=1 (3)
R,(X)=exp(—X*2) H,(X). '

Aside from the new standardization, eq.(3) may
equally well represent the Gram-Charlier, Edgeworth,
or saddlepoint expansmn, i{ the coefficients ¢, are
computed properly. It is interesting to note that the
structure of the corresponding characteristic function
C.{£) with the standardized variable £ is invariant
with respect to a Fourier transformation,

Cull) = EXp(=TZRTT = | palx)exp(—i2néx) dx

. , . N
=2/ exp(~ix8x) T (-7 e, R,_1(5),
g=2mify. @

If the p.d.f. p.(x) is given analytically or numerically,
the bagic parameters x, and y may be found either by
computing the first ordinary and the second central
moment, or, as it is done here, by least-squares fitting
a Gaussian R,(X) to the values p (x) with x = x,,
X=X, inside a reduced range K, <k <K, of the
main lobe,

K -
2 [Px(xx) _AO Rﬂ (Xk)]z = min 3 5
k=K, ' ( )
In {AgRo[x(x,—xo)]} =A; + A, x, + Ay xE .
With the abbreviations B, A for column vectors with

the elements B, A, ., and § for Hermitian matrices
with the matrix elements §,,; one has to solve the
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Fig. 1. Companson betwpen vanous approxlmatlons for the non-Gaussian p.d.f eq. (13). The ﬁttmg range is —-1<x<15

(a) Maximum order of moments is m=3. -

{(b) Maximum order of moments is m=9; for cls.t the r.rms. error is 20%.

system of. equations for A,
B=54, 4=S"'B,

K3
Bi= Y x;7'Inp,(x,),

(©)
. k=K o
‘ PR
=T =5y
k=K,
For the parameters 4,, x, and y oné¢ finds
Ay =expld, — A} A, -
xo=—A/(245), x=(=249)"*.

The expansion coefficients for p.(x) in the chosén
function system are computed by minimizing the sum
of the squared relative errors for all va]ues Px(x) with
x=x, X=X,,1<k<K, :

kgl mz-[px (xk) _ngl Cn Rnr 1l (Xk):lz = min >

W=1/p.(x). @

For the coefficient vector C with the elements ¢, one
has to solve the system of equatlons

B=SC, C=5"'8,
-

X . .
§y =E wiz R, [X (xh;“xd]] R, [X (xi“xd)] = 'Sni .

= 5 W) Ryl (—xoll,

The normalization integral in eq. (3) modifies in effect
the ¢, computed froni eq.(9) by a ¢onstant factot,
which usually dev1ates only by small amounts from
one.

The moments y, of order m about the origin are

+o N ‘
Ju:n (xst) = _.I.‘ xm px(x) dx = {-‘rldmu (xo,l) Cn ’ (]O)
a0 1) = (/20 | /Bl + 30"

exp(—uf) H,_~1(ﬁu) du. . . (11)

The integration variable u is chosen to facilitate the
application. of the. Hermite integration-technique, a
numerically -very. fast formula of Gaussian type [3,
Section 25, Formula 25.4.46, Table 25. 10] for u, and W),

¥ exp(—ul)f(u) du =
i

v

(12)
e[S 0d + f(— u;)] Ieven,

W, f(tlll"=,0)+|=22 w,[f @)+ f(~u)] lodd.

The.result is exact, if (as it is the case here) f(u) is a
polynomlal of . maximum . degree s —1+m, and if
={n —1+m)/2) +1 is.valid ([z] stands for the in-
teger partof ). .
The advantages of thc proposed r. l Saf method over
the Gram-Charlier, Edgeworth and .Cornish-Fisher
expansions wil] be demonstrated for the p.d.f.

1 v
awoE )
cexp[—x2/(2- 0. 52)] |: + ;a.rc‘t_an (5x)]. (13)

pu(x) =

Fig. 1 shows this function withi' dashedt ]fneS','Fi“g.'i'a
displays as a heavy line {he rlsf approximation with
N =3 coefficients in eq. (3), i.e., for moments up to'a
maxifum' order m=3, The equ1valent cuivés for the

. approximations Gram-Charlier, Edgeworth, and Cor-
nish-Fisher are taken from [16], [17] (both for Fig. 1a
and Figi 1b), and are for m=13 not to be disctiminated
from the r.ls.f graph As to be expected from the low
number of ¢ expansion terms, the quality of the approx-
imations is poor.

- The various cxpansions differ much more, if nine-
térm series N =9 with moments up to the maximum
order m=9 are evaluated, Fig. 1 b. For the r.L.s.f curve
the relative root mean square (r.c.mus.)-error for the
fitting range —1 £ x £1.5 inn comparison to the ideal
ourve eq. (13) amounts to 20%; theideviation is hardly
to be seen left of the peak. The three other expansions
exhibit large errors, especially negative p.d.f. ranges.
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2. 2. Non-Gaussian p, df ¢q. (1 3) for N =10 (r.rm. S, eITOr
41% see Fig. 1'b)and N'= 22 (t'r.m.s. error 50%) coéfficients;
The fitting range is —4.6<x<5.62,

These irregularities increase with increasing maxi-

_ mumi‘ordeér-of the moments, as 'oppossd to the rlsf
technique. This is partly due to'the fact that in per-
forming the meoment integral'eq. (10 a-sum of Gaus-
sian-like:decaying ‘terins has to be evaluated, and that, -
therefore, computers with finite accuracy evaluate the
tail contributions erroneously [14], :but: partly the
cause [or this behaviour lies also in the fixed Gauss- -
Hermite function system, whlch is defined by the} mo-
ments themselves. .

- The rlsf method guarantees that the p.d.f. talls ate
as much' taken info abcount us the éeritral parl“s No
time-consuming and error-prone numerical integra-
tion i§ Teduired, only the solution of & system'of equat
tions wherte fast and accurate s{andard algomﬁhme are
availablé. Therefore, ‘it i unlikely (but-not imipossi=
ble!) that negative p.d.f. regions occur. As an example
Fig. 2 shows the ideal (eq.(13)) and the rlsf cirves
for N ='10(as in Fig, ‘1'b)and' N =22 eoefficients in'a
semllogarlthmic dlsplay, where | p,(x}]; measured in
dB (decibel), is given by 10 1g (} p.(x)]). The approxi-
mations are positive definite and unimodal all over the
real x-axis. The r.r.m.s. efrors 41% and 50% are larger
than in: Fig.;1b.becausé -of the larger. fitting range
—4 6<x<5.62. For the curve N=22 of Fig.2 no

ificant deviation from the idea) is to be seen, but
ccomes lower by 45 dB on the left hand side of the

'ﬁttmg range at x = — 4.6, where the ideal valye would
have been about —200 dB. On the right hand side fox
x=5.62 the level, (1dea11y about —270 dB!) becomes
lower by only 22 dB. Obvnously, the number of qoen’i-
cients should be’ 1ncreased for. such demanding - re-
qlurements

An esPecmlIy cntlcal example ofa ]ong-tal.led dlstrl-
bution i3 " (14)

Po(x) = exp[— |xixtz-‘0.5J1 [1 +24 arctan (5 x)]

4 0 405
dll‘l'ermg from eq (13) by.its. slow-. exponentlal decay
.and its tharp edge at x =0, Fig, 3 gives the.approximas
tion for N =48 eoeflicients. The r.r.-m.s.eroris 31% in
a fitting range: of —9.58:%x < 10.74. As in'Fig1 and
Fig. 2, the approximatioii is pesitive definite,.and:uhi-

~9.58<x 51074,

Fig. 3. Slowly decaying monGaussian pd.f. “eq.(14) Ior
N =48 The' r.rmis: ool ig™319%4" iﬂ h ﬁttlng range

Com s Rlgartedn oo

M i . [
oL ALENIWO U Gt e

modal. On the left and right ha;.ndl side of the fitting
range the curve is lower by-about 25:dB and 21 dB,
respectively, as cgfnp%redito eq, £14) .

:: N .

3 Iteratmn Procedure fq Satlsfy
p.d.f. Constraints .

If with xo;'¥ 4 certain function 'systett is chosen, the
elements d,,,, eg.(11), of a matm D are determined
independently 11' the elements 4, eq. (10), which con-
stitute the‘ibrhént vector M”. Consequently, it makes
sense‘to wnte -eq. (10) in matnx form,

e:p *M' 15

$0 that the elernents Ch of the coefﬁment vector Cin the
p:d.f. expansion eq. (1) are to be.computed by a simple
matrix invers lon (D must be square for that purpose,
i.., the maximdit dumber of moments must ‘equal the
number N. of coel'ﬁments)
“"In the conventiohal case of the Gram-Charher
or Edg wo:;h serigs,, where. xo =#y,. ¥ =1/ =
are yalid by, definition, € is completely
ﬁxed by M, and if the resultmg pdf eq. (1) derived
from, say, the fir8t ten“morhents'is not’positive definite
by chance (which is very unlikely for an infinite range
of the random variable %), the exPanswn is:physically
meaningless,

Withthe present me,tl;od, the systemparameters Xg
and y may be adjusted starting from ther initial values
abave, 50 that the p.df, obeys the. .constraints. If for a
given M. thiz ¢; not be agh e;vg;q, the, number of rele-
vant. moments (and coeffipients!) may be:reduced by
one, and the procedure repeated.

For.adjusting the paramaters x, and x, an abjective
function g(x,, ) is to be minimized. Most important,
the pomtwe-defimtenéss of p,(x) has fo be tested. This
may be'done efﬁeiently by comiputing the real zetos of
the (for N <10 exphculy programmed) polynomial

B §= En=-lc ‘Hn-l.(X) n eq. U) The mnses Xner Ibr. a

negative p.d.f. are checked, and g is defined as the
maximum of the dominant.exponential-for the region
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Fig. 4. Filter input p.d.L. |p,(3)[; Biter output p.df’s | ptx}:
Gaussian, initial and final (—), intermeddiate (3th iteration}).

X o> first line of eq. (16),

max [exp (= X7, /2)/E =0
if ranges X, exist,

~{N—ZYE<0 if no ranges X, exist

E is a normalization faetor, .. E=10"7%, s an esti-
mate of the wanted probability to be computed from
7. (x} If after a proper variation of x,, and ¥ no ranges
X neg €xist any more, p,(x) is positive definite. When
this is true, the objective fupction is switched 10 a
different definition, second line of eq. (16), for improv.
ing the smoothness of p,(x) by checking the derivative
§ of 8. Z is the number of real zeros (1 < Z < N) of the
{for N =10 explicitly programmed) derivative §'; this
secondary objective function g counts Z, yielding a
measure of the undulation in p_(x), A standard sim-
plex pmcedure see, €.8., [18 Section 2.2}, may search
for a minimum g while varying the set Xgs X For each
set the corresponding D, and, by matrix inversion, the
elements of € are computed to determine the polyno-
mials S, 5.

Fig. 4 shows some numerically reconstructed pd.f
in a semi-logarithmic display. The distorted Gaussian~
like pd.f p,(¥) eq. (13) of the new random variable y
is represented by a series eq. (1); the ¢, were found
by the rlsf technique described above, (x,=0.31,
=28} The random variable y be statistically inde-
pendent, and its moments transformed by a digital
transversal lowpass filter of second order with 100
coeflicients and a ratio ‘sorner frequency to reciprocal
sampling interval’ of 0.1, The initial pd.f p (x) at the
filter output, recopstructed from the inversion eq. {15)
with xo=u,, y=0* (4, o being the first two mo-
ments at the filter output), is designated by (5=
xg=0.31, y=4.6}; the p.dl defined by only the first
two moments s~={} is. named ‘(zaussian’. x,, x and
therefore D and C for the fixed moments at the filter
output are iterated from the initial state s=( through

g= 16)

(19913, No: 2 W. Freude: BExpansion of Probability Density Functions 93
Trir 4 very bad intermediate state (z= 16 x, =014, y =57}

g to the final, smooth state {s==21: x,=022, y=52)
& Each kink in the curves s=0, =16 indicates a sign

change of the p.d.f It is remarkable that the coarse
structure of the p.d.il remaing unchanged, while their
details vary strongly with small changes in x,, x. The
computing time lor the iferation using FORTRAN 77
and a PC/AT DOS 3.30 machine with a coprocessor
cock frequeney of 12 Mz was only 40 5.

4. Double-Gauss-Hermite Function
System

S0 far, the basic function system has a Gaussian decay
factor which is identical for both the + X and the — X
directions in eq. (3). As a conseguence, only asympiot-
ically symmetric pdf will be approximated with low
errors. i this symmetry is strongly disturbed as for
phase noise [19], [20, Section 3.34] x~cosz with a
(aussian density of z, the convergence properties of
the fteration procedure become worse.

Therefore, R, (X} eq. (3} was gezzeraizzed using e:E3f~ .
ferent Gaussian functions for dﬂ’femi signs of X
namely .

Xyemple—xy), Xp=2300-24,

RAX)) for x=x,
R, X) {Rx{Xz) for x€xq

Mow, the basic function system is characterized by
the three PArameiers X, 1, and x,. As before,
the mtegrais in eg. {11) (this time of the type
§ u™ exp (—u*) du) may be solved analytically, so d,,
can be calculated efficiently by summing up precom-
puted factors which are weighted by powers of x,, x,,
and y,. As a consequence, the computational effort
does not increase compared with the single-Gauss-
Hermite expansion.

The techniques described above were tested with
outpot data.x from the simulation of any optical DPSK
heterodyne receiver with dominant. phase noise
(DPSK, differential phase shift keying). For comput-
ing the BER the pdf p (%) of the time sequence
X=X, Xg, .. X of output datg jn front of the deci-
sioh eircuit has 10 be reconstructed from an estimate
of the associated moments. Details of the simulation
and of this estimation process are of no importance for

a7

. the.present discussion. For a rough estimate, the pd.f,

was reconstructed direetly by computing the span of
the sorted sequence x,_ | < x, for a fixed subscript in-
terval i iR d e, p /2 0o g+ 3]0~ A%, 5 s — %)
{assuming that the probability of identieal values x; in
the subscript interval J is negligible). This technique
{24, Section 13.3} is far superior to the usual method,
where the frequency of data for a fixed interval of x is
counted, Next, the Pearson method for a beta-p.df
using four {and only four) moments was employed
with p,{x) = (1 + x/aj) (1 — x/a,)% the parameters a, ,
a,, p aid ¢ are vniquely determingd by the moments
of the process. Finally, the Gauss-Hermite and the
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Fig 5. Reconstruction of a pal from phase noise sample
data; direst method, Pearson (beta-p.d L, 4 moments), Gauss-
Hermite (5 moments), double-(auss-Hermite (9 moments).

i, = - 005, a; = 3.1 shows up for the lower bound-
ary. Secondly, the Pearson function i3 asymptotically
strongly asymmetric in contrast to the physical situa-
tion. The evaluation of the BER integral for the dou-
ble-Grauss-Hermite curve yields BER 209 - 107* in
close agreement with the theoretical value. However,
for x<0 the order of magnitude of the Pearson
function is seen to be smallér by a factor of 1000,
and extended over a narrower range, so with
BER =4 - 1071t the errer pm‘z}abxiﬁy is grossly un-
derestimated.

5. Further Impmven?enﬁé _

In reconstructing 2 p.d.f from moments it was as-
sumed that the true moments were known, However,
usually the moments are only estimated from a data
sample, and are therefore inacourate. If moment error
bounds can be computed, the iteration process mini-

* mizing the objective function eq. {16) can be improved

=

. . [
T dfl fdouble Gauss-Hermile
N f [Wwmes)
g -3
% =g-3 f-Pearson
g 8E=49 e by sz
£ -t ¢
= 3
& % ‘;1
-4 E] i i 3
I e

Fig..6. Reconstruction of 2 p.df. from Gaussian noise sam-
ple data: Pearson {beta-p.df, 4 moments), double-Gauss-
Hermite (9 momenis).

double-Gauss-Hermite . approximations were calcu-
lated; the maximuom useful number of moments o
reach convergence in the senss of the minimizing crite-
ria eq. {16} for varying x,, x and x5, x4, x; was
HN=m=35 and N=m=9. The results are shown m
Fig. 5. Obviously, the double-Gauss-Hermite tech-
pigue is closest (in mode and curve details) to the
direct reconstruction. As is to be expected, the simple
Gauss-Hermite series reacts unwillingly’ in approxi-
mating an asymptotically asymmetric p.d.f. The lincar
display of Fig. 51s not very informative if low BER are
to be estimated.

in a different simulation run only addttlve Gaussian
noise was assumed to disturb the DPSK recaiver, The
model parameters were cht)sen such that a szmple the-
ory [22] yielded BER = {°_ p.(x)dx~10"% The
semi-logarithmic display Fig. 6 compares the péi.’s
from the Pearson and the double-Gauss-Hermile re-
construction; both curves reproduce per definitionem
identical moments up to the order four. A strong
discrepancy is to be seen. First, the limited defini-
tion range of the Pearson funciion with g, < x < a,,

by varying not only the parameters of the function
systen, but also the moments themselves inside their
error bounds, This should add enough degrees of free-
dom to fulfill the p.d.f. constraints. Work is in progress
to develop error bounds for various moment cstima-
tion technigues, and to add the moment variation to
the iteration algorithm,

6. ‘ Cenck;sioﬁ

Probability density functions may be expanded in
Guauss-Hermite series by a relative least-squares error
fit, thereby avoiding the problems of negative regions
and nen-unimodality usually associated with the stan-
dard seriés expansions derived from ‘moments. The
morents of a statlstically independent random vari-
able may be efficiently computed, then, and trans-
formed by linear filters in explicit form.

To reconstruct 2 pA 1. from given moments the pro-
posed iteration algorithm is well suited, Hs main nu-
merical advantages ire 1hé formulation for a fast nu-
merical integration, the determination of the expan-
sion coefficients by matrix inversion, and the du\ect
search for zeros of the basic polynomials.
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