WS 2024/25

Optical Transmitters and Receivers (OTR) Tutorial on Semiconductor Basics

Christian Bremauer, Mohamed Kelany

Institute of Photonics and Quantum Electronics (IPQ), KIT

www.kit.edu

Content

Band Diagrams, Band structure

Density of states Effective density of states

Fermi-Dirac Distribution Boltzmann approximation

Doping, pn-junction formation and current-voltage characteristics

Silicon atom energy levels

- Si atom :
 - 14 positive charges in the nucleus
 - 14 electrons residing in shells around the nucleus (principal quantum numbers n = 1, 2, 3, and 4

Shells n = 1, 2, ...Maximum number of electrons: $2n^2$ But maximum 8 in the most outer shell

Lyman series

Balmer series of hydrogen atom:

13 December 2024 Bremauer/Kelany/ Freude

3

Each orbital possesses a distinct energy level

Subshells l = 0, 1, 2, ... (s, p, d ...)Maximum 2 electrons in each orbital

[2] Wijeratne, K. (2018). Conducting Polymer Electrodes for Thermogalvanic Cells (PhD dissertation, Linköping University Electronic Press), https://doi.org/10.3384/diss.diva-152888

Atoms forming bonds

When atoms come closer to each other to form bonds: Atomic orbital energy levels split into bonding and antibonding orbitals (Pauli's exclusion principle)

For 2 atoms:

For 6 atoms:

Splitting into 6 discrete energy levels

Pure Si crystal energy levels \Rightarrow energy bands

- When silicon atoms are put together in a lattice, the orbitals of adjacent atoms interact.
- Atom density of silicon is $5 \times 10^{22} \text{ cm}^{-3}$.
- The 3s- and 3p-states split into 5×10^{22} different energy levels.
- Half of these states move lower in energy and form bonding states. They are occupied by electrons.
- An equal number of unoccupied states are higher up in energy.
- At the minimum atomic distance of the Si crystal (d = 0.234 nm at T = 0 K, lattice constant a = 0.54 nm) a band gap $W_{\rm G} = 1.1$ eV void of energy levels is formed.
- Discrete, but densely spaced energy states of a Si atom are represented by energy bands above (conduction band) and below the bandgap (valence band).

Insulators, semiconductor and metals

- Insulator: Large bandgap, (almost) no electron states occupied in conduction band, fully occupied electron states in valence band
- Semiconductor: Smaller bandgap, valence band and conduction band partially filled due to thermal excitation at room temperature T = 293 K

Metal:

At T = 0 K conduction band partially occupied, or even overlapping with valence band

Direct and indirect semiconductors

Direct semiconductor (e.g. GaAs, InP)

- Quantity k_{μ} is the propagation constant of the electronic wave inside the crystal. Linear electron momentum in crystal is $\hbar k_{\mu}$ (de Broglie)
- Maximum of valence band and minimum of conduction band at same momentum $\hbar k_{\mu}$.
- Very probable transition, energy and crystal momentum conserved. If transition is radiative, then material is usable for light emission.

Indirect semiconductor (e.g. Si, Ge)

- Maximum of valence band and minimum of conduction band at different momentum ħk_µ.
- For a transmission from $W_{C,min} \rightarrow W_{V,max}$, a momentum change of $\hbar \pi/a$ is required.
- Momentum of a photon: $\hbar 2\pi/\lambda$, with $\lambda >> a$
- Third particle needed (phonon) for crystal momentum conservation, unlikely transition

Density of states

Density of states: Number of available energy states per energy interval and volume

 ρ_{C} : density of energy states per energy interval in <u>conduction band</u> ρ_{V} : density of energy states per energy interval in <u>valence band</u>

$$\rho_{C}(W) = \frac{1}{2\pi^{2}} \left(\frac{2m_{n}}{\hbar^{2}}\right)^{\frac{3}{2}} \sqrt{W - W_{C}}$$

$$\rho_V(W) = \frac{1}{2\pi^2} \left(\frac{2m_p}{\hbar^2}\right)^{\frac{3}{2}} \sqrt{W_V - W}$$

 $m_{n,p}$: effective mass of electron (hole) moving through periodic crystal potential

Density of states increases with increasing energetic distance from band edges

Fermi-Dirac distribution

The occupation probability of electrons in available energy states in a band is given by the Fermi-Dirac distribution

$$f(W) = \frac{1}{1 + e^{\frac{W - W_F}{kT}}}$$

k Boltzmann's constant

$$kT$$
 Thermal energy, 25 meV at $T = 293$ K

- W_F Fermi energy
- f (W) describes the probability that a state at energy W is occupied by an electron.
- *W_F* is called the **Fermi energy** where the occupation probability is 1/2 at all temperatures.
- In equilibrium, the Fermi energy is a material constant. It changes if we move from intrinsic to doped semiconductors

Creation of electron-hole pair

Fermi-Dirac distribution: intrinsic semiconductor

- Intrinsic semiconductor Fermi level located in the middle of the bandgap
- Symmetry of the probability distribution → probability of finding an electron in CB equal to probability of finding a hole in VB
- $f_V(W) = 1 f(W)$ is the probability that a state at energy W is **not occupied** by an electron (empty state)
- As an empty energy state in the valence band is called a "hole", $f_V(W)$ gives the probability of finding a hole in the valence band

Carrier concentration (intrinsic semiconductor)

- In semiconductors, both the <u>electrons in the CB</u> and the <u>holes in the VB</u> contribute to conduction.
- *Carrier concentration* in conduction band (n_T) and valence band (p):

Effective density of states

Simplification of the density of states function

- Assuming all the states are located near the band edge W_c and W_V
- Result: Effective density of states in conduction band (N_c) and in valence band (N_V) .

$$N_C = 2 \left(\frac{2\pi m_n kT}{h^2}\right)^{3/2}$$
$$N_V = 2 \left(\frac{2\pi m_p kT}{h^2}\right)^{3/2}$$

Only *T* is variable $m_{n,p}$: Effective mass of electron and hole *h*: Planck's constant *k*: Boltzmann constant

Typical values for GaAs at T = 293 K $N_c \approx 10^{17}$ cm⁻³ $N_V \approx 10^{18}$ cm⁻³

Boltzmann approximation

Simplification of the Fermi-Dirac distribution
$$f(W) = \frac{1}{1 + e^{\frac{W - W_F}{kT}}}$$

- kT is usually a small number ≈ 25 meV at 293K
- As long as $W W_F \gg kT$ the exponential term in the denominator dominates
- If Fermi level is far away (> 3kT) from the band edges W_c and W_V Boltzmann's approximation holds:

• Note: $f_{V,p}(W) = 1 - f(W)$ is not valid when Boltzmann's approximation is used

Carrier concentration:

$$n_T \approx N_C e^{-\frac{W_C - W_F}{kT}}$$

$$p \approx N_V e^{-\frac{W_F - W_V}{kT}}$$

$$n_T = p = n_i = \sqrt{n_T p} = \sqrt{N_C N_V} e^{-\frac{W_G}{2kT}}$$

 n_i increases with increasing T n_i decreases with increasing W_G

Boltzmann approximation graphical representation

Doping

n-type

Intrinsic semiconductor: Pure semiconductor with negligible amount of impurities. Electron and hole carrier concentrations in thermal equilibrium are determined by material properties and temperature.

$$n_T = p = n_i = \sqrt{n_T p} = \sqrt{N_C N_V} e^{-\frac{W_G}{2kT}}$$

 W_{G} (Si) = 1.1 eV W_G (GaAs) = 1.4 eV n_i (Si) = 1 × 10¹⁰ cm⁻³; T = 300K n_i (GaAs) = 2 × 10⁶ cm⁻³; T = 300K

and positively charged "holes" are created in the valence band (p-type).

Extrinsic semiconductor: Doping changes carrier concentrations in thermal equilibrium. *Donors* "donate" negatively charged electrons to the conduction band (n-type). Acceptors "accept" additional electrons

Doping

ionized donor atoms: additional electrons

Neutrality condition: the density of negative particles and positive particles should be equal. there are four types of charged species in a doped semiconductor: electrons, holes, donor ions, acceptor ions.

 $n_T + n_A^- = p + n_D^+$

ionized acceptor atoms: additional holes <

Mass-action law holds in thermal equilibrium for intrinsic and (non-degenerately doped) extrinsic semiconductors:

$$n_T p = n_i^2$$

At room temperature:

n-type:
$$n_D^+ - n_A^- \gg n_i$$
p-type: $n_A^- - n_D^+ \gg n_i$ majorities: $n_T \approx n_D$ majorities: $p \approx n_A$ minorities: $p_{n0} \approx n_i^2/n_D$ minorities: $n_{p0} \approx n_i^2/n_A$

n-type semiconductor in thermal equilibrium

Currents in semiconductors

• Drift current density due to an electric field \vec{E} acting on the carriers

$$\vec{J}_F = \vec{J}_{n,F} + \vec{J}_{p,F} = \underbrace{(en_T\mu_n + ep\mu_p)}_{=:\sigma} \vec{E} \quad e^{\mu_{n,p}}_{\sigma}$$
 carrier mobility
elementary charge σ conductivity

Diffusion current density due to a gradient in carrier concentration

$$\vec{J}_D = \vec{J}_{n,D} + \vec{J}_{p,D} = eD_n \text{ grad } n_T - eD_p \text{ grad } p$$

Diffusion coefficients
$$D_{n,p} = \mu_{n,p}U_T = \mu_{n,p}\frac{kT}{e}, \text{ where } kT = 25 \text{ mV}$$

pn-Junction in thermal equilibrium

- Electrons diffuse into the p-type semiconductor, and holes into the n-type semiconductor.
- The positively and negatively charged donor and acceptor ions in the space charge region (SCR) build up an electric field that counteracts diffusion.
- In thermal equilibrium, there are zero net electron and hole currents, i.e., diffusion and drift currents compensate each other:

$$\vec{J}_{n,F} + \vec{J}_{n,D} = \vec{0}, \qquad \vec{J}_{p,F} + \vec{J}_{p,D} = \vec{0}$$

 A. Ahmed, "Forming a P-N Junction of Diode !," IAMTECHNICAL. http://iamtechnical.com/forming-p-n-iunction-diode (accessed May 28, 2020).

pn-Junction in thermal equilibrium

Thermal equilibrium (U = 0)

- p and n-type are brought in contact
- Space charge region is formed
- Built-in potential is created

Karlsruhe Institute of Technology

Diffusion and drift currents compensate each other

U_{bi}: Built-in potential

Adapted from H. Göbel, Einführung in die Halbleiter-Schaltungstechnik. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019.

pn-Junction in thermal equilibrium

pn-Junction in forward bias

Forward bias (U > 0)

- Fermi level split into quasi fermi levels
- Potential becomes smaller for U > 0
 → increased diffusion current
- Strong gradient of carriers
- Diffusion current dominates

Adapted from H. Göbel, Einführung in die Halbleiter-Schaltungstechnik. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019.

pn-Junction in reverse bias

Reverse bias (U < 0)

Adapted from H. Göbel, Einführung in die Halbleiter-Schaltungstechnik. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019.

pn-Junction: quasi Fermi levels

- If external voltage is applied, the Fermi level is no longer constant over the whole semiconductor
- Inside the space charge region, quasi Fermi levels occur, which describe hole and electron concentrations in valence and conduction band independently
- Forward bias: Within the space charge region it is now possible to have a high number of electrons and holes at the same time
- Reverse bias: within the space charge region, the carriers are separated before they have the chance to recombine

Adapted from Optoelectronics and Photonics: Principles and Practices by S.O. Kasap, 2nd Ed. (Fig. 3.26)

pn-Junction

