information, Laser communication and ranging, spectroscopy etc. Superconducting Nanowire SPDs (SNSPD) outperform Semiconductor-based SPDs in many metrics, but development of arrays is

challenging. IMS KIT currently develops SNSPD-arrays with Frequency-Division Multiplexing – "**RF-SNSPD**". To increase optical coupling, the possibility of using 3D-lithography written freeform micro lens assemblies shall be evaluated. These will be fabricated in an additive manufacturing step at IPQ.

Arrays of Single-Photon Detectors (SPD) are required for many applications, including Quantum

Your tasks may include:

- Design of microlenses and microlens arrays using in-house developed tools
- 3D-lithography fabrication of freeform lenses on RF-SNSPD chips
- Participation in characterization experiments
- Investigation of lithography schemes for increased fabrication throughput

For detailed information contact:

M. Sc. Yilin Xu	Dr. Artem Kuzmin	Prof. Dr. Christian Koos
<u>yilin.xu@kit.edu</u>	artem.kuzmin@kit.edu	christian.koos@kit.edu
Tel. 0721-608-41935	Tel. 0721-608-44994	Tel. 0721-608-42481

3D-printed lenses for arrays of Radio-Frequency Superconducting Nanowire Single-Photon Detectors

Doerner, S., et al. *Applied Physics Letters* 111.3 (2017): 032603. Dietrich, P-I., et al. *Nature Photonics* **12**, 241--247 (2018).

