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8. Tutorial on Optical Sources and Detectors 

June 26
th

 2012
 

  Small-signal modulation of a laser diode Problem 1:

In so-called direct modulation schemes, data is encoded on a laser beam modulating the pump 

current and thereby the laser output power. The question is how fast this modulation can be. 

This can be investigated by solving the laser rate equations, 
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where NP denotes the number of photons in the mode under consideration,  the confinement 

factor, G(nc, NP) the gain rate, nc the carrier density, V the active volume, eff and P are the 

effective electron and the photon lifetime respectively. Q is the fraction of spontaneous 

emission that emits into the mode under consideration. In the general form, the gain rate G(nc, 

NP) depends on the carrier density and on the number of photons; the rate equations are hence 

nonlinear and cannot be solved analytically. For a basic understanding it is however sufficient 

to consider a linear small-signal approximation about a stationary operation point, which is 

given by NP0, nc0 and I0. The time-dependent, small-signal perturbations around the stationary 

operation point are denoted as      1 1 1, andP cN t n t I t . 
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For the small-signal analysis we neglect spontaneous emission and assume a linear gain 

model without gain compression, i.e.    .,c P d c c trG n N G n n   , with the differential gain Gd 

and the transparency carrier density nc,tr. Moreover we assume that the effective carrier 

lifetime does not depend on the carrier density, i.e.  eff const.cn   

a) Linearize the laser rate equations by inserting the small-signal ansatz and calculate the 

transfer function describing the relationship between the photon number  1PN   and 

the modulating current  1I  , where the tilde denotes the Fourier transform of the 

respective time-dependent function. Bring the solution to the following form: 
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Hint: Make use of the fact that NP0, nc0 and I0 are stationary-state solutions for which 

the time derivatives in the rate equations vanish. 

 Inserting the respective assumptions the rate equations become: 
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Now the small signal ansatz can be inserted. After subtracting the steady-state solution 

and neglecting products of the small signal quantities: 
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These coupled differential equations can be solved by Fourier transformation: 
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Now  1cn   can be eliminated and the resulting equation can be solved to obtain: 
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Figure 1 Magnitude of the small signal transfer function for different ratios r r  , where const. 10GHzr   . 

b) For a given relaxation frequency r, what is the maximum 3dB bandwidth max

3dB  of the 

laser and for which value of r can it be achieved. The value corresponds to the case of 

critical damping.  

Note: The 3dB bandwidth 3dB is defined as 
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 The magnitude squared of the transfer function can be calculated and set to 1/2: 
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This equation can be solved for  
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which can then be maximized by solving  
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leading to 2 22r r  , which yields max

3dB r  . 

c) To increase the modulation speed of a laser, the relaxation frequency r should be 

maximized. Discuss different design approaches that allow to increase r and shortly 

explain the physical mechanisms behind them. 

 As derived in part b) the maximum 3dB bandwidth is r and can be achieved in the 

case of critical damping, i.e. 1 2r r
   . The relaxation frequency can be 

maximized by three means:  

o Small photon lifetime P: This can be achieved by increasing the outcoupling, 

i.e. small mirror reflectivities. However this also increases the laser threshold 

current and broadens its linewidth. 

o Large photon density P0N V : That means that the active volume of the laser 

should be small. When operating the laser a large bias current can be used. 

However limits are set by temperature issues and the onset of multimode 

operation. 

o Large differential gain Gd: This can be influenced by the doping and strain as 

well as by special geometries of the active zone, e.g. quantum wells or dots. 

Questions and Comments: 
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