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2. Tutorial on Optical Sources and Detectors 

May 8
th

 2012 

Problem 1:  Density of modes in an optical resonator 

Consider a three-dimensional optical resonator constructed of three pairs of parallel mirrors 

that form the walls of a box with edge lengths Lx, Ly, and Lz. Eigenmodes of the resonator 

have to fulfill the boundary conditions at the sidewalls and are represented by standing-wave 

solutions with discrete components kx, ky, and kz of the wavevector. In the following, we will 

calculate the density of these modes per unit of volume and frequency. The derivation can be 

performed in analogy to the density of states of electrons in a semiconductor. 

a) Find the condition for kx, ky, and kz that need to be fulfilled in order to obtain standing 

waves within the three-dimensional resonator. For simplicity, assume that the 

resonator is filled with air of unity refractive index. 
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b) Each pair of modes (considering two polarizations) is represented by a positive triple 

of kx, ky, and kz, all of which are fulfilling the boundary condition. Calculate the 

volume Vk that a single optical mode occupies in k-space? 
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c) Calculate the number of optical modes M( f ) within the frequency interval 0 and f. In 

k-space these modes lie within the positive octant of a sphere, the radius of which is 

related to f. Calculate the density of modes, i.e. the number of optical modes per 

volume and per frequency interval:   
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d) In Section 2.1.2 of the lecture notes the following quantity is denoted as the “average 

number of photons per mode”: 
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Show that this formula can be derived by dividing the number of photons Np in a resonator by 

the number of modes in the resonator. Is the average number of photons per mode dependent 

on the parameters of the model resonator? 

 

 The number of available modes within a certain frequency interval [f; f + df] is given 

by the product ( ) dmodes resN f V f   . 

With frequency in [f; f + df] inside the cavity and with u(f) the spectral energy 

density, the number of photons follows as 
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Problem 2: Carrier Concentration in Semiconductors 

The densities n of conduction band (CB) electrons and the density p of valence band (VB) 

holes of an undoped semiconductor can be calculated with the help of the density of states 

( )C W  of the CB and ( )V W  of the VB, and the Fermi-Dirac distributions ( )f W  and 

 1 ( )f W  for electrons and holes, respectively: 
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If the energetic distance of the Fermi level from the band edges is , 3 C V FW W kT , then the 

Fermi functions can be simplified by the Boltzmann approximation 
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which shall be used for the calculations below. In practice, however, this condition is usually 

not fulfilled, e.g. for a highly doped laser diode, the Fermi level is very close to or even inside 

the band. Thus the following considerations show the principle only.  

a) Show that the maximum of the electron distribution    C W f W  is found at the 

energy / 2kT  above the band edge CW  of the CB. 

 In a undoped bulk semiconductor the density of states is 
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b) Solve the above given integrals for n and p by using the Boltzmann approximation and 

write the carrier concentration as 
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where NC and NV are the effective density of states of the CB and VB, respectively. 

 The carrier concentration n can be written as: 
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  Expanding the integral with exp1 c cW WkT
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  To solve the integral use the substitution:  
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  The calculation of p can be done analog. 
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c) Take the results from b) and determine the energetic distance of the Fermi level 

relative to the band edges. 

 In the intrinsic case it follows for the carrier densities n = p. 
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  Solving for WF: 
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d) The bandgap energy of GaAs is WG = 1.424 eV, the effective masses are mn = 0.067m0 

and mp = 0.48m0, where m0 is the electron rest mass. Determine the intrinsic carrier 

concentrations n and p of GaAs at T =300 K by using the results of b). 
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Problem 3: Fiber optic communication system 

Consider a fiber optic communication system that transmits data with a data rate of 40 Gbit/s 

over a distance of 100 km. The data is modulated onto a carrier at 1550 nm and the fiber has 

an average attenuation (considering splices etc.) of 0.3 dB/km. The transmitter couples an 

average power of 2 mW into this fiber. 

Assume that the '0' bits don't carry any power whereas the '1' bits have a constant power 

throughout the whole bit slot (non-return-to-zero (NRZ) modulation). Further suppose that the 

probability for transmitting a '1' is equal to the probability of transmitting a '0'. 

How many photons arrive at the receiver during a single '1' bit? 

 

 The Attenuation in the system is 0.3 dB/km ∙ 100 km = 30 dB  

at 2mW input we get 3dBm – 30dB = -27 dBm= 2 µW  

‘1’ and ‘0’ are distributed equally, but only the ‘1’ carries power which equals to 

4 µW of average power at the receiver if only ‘1’s were transmitted 

Average number of photons N  during a ‘1’ calculates as:  
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Questions and Comments: 

Matthias Lauermann  Jörg Pfeifle 

Building: 30.10, Room: 2.32 Building: 30.10, Room: 2.23 

Phone: 0721/608-41695  Phone: 0721/608-48954 

Email: Matthias.Lauermann@kit.edu Email: Joerg.Pfeifle@kit.edu 
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