Seminar of the IPQ

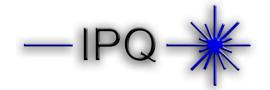
October 29, 2025

"Strontium titanate as a novel Pockels material for quantum electro-optical applications" Dr. Christian Haffner (Imec)

Abstract:

Quantum computers face many challenges towards upscaling the number of qubits and increasing their computational power. For superconducting qubits, this is the radio frequency (RF) -bottleneck between the qubit processor inside the cryostat and the room temperature control and readout electronics. And like for their classical counterparts, hope lies in replacing the RF-links by optical fibers, resulting in a hybrid situation where RF-qubits will be used for computation and optical qubits will serve for remote communication. However, electro-optical (EO) transducers that parametrically amplify RF-qubits directly to optical qubits with a unity efficiency have thus far remained elusive. Key to a unity efficiency are materials that feature low losses, strong nonlinearities and that allow to squeeze down the electro-magnetic field to smallest volumes. Current research focuses on devices based on opto-electro-mechanics or on lithium niobate devices - the classical workhorse of long-range optical communication. In this talk, we discuss high-k strontium titanate as a potential new material that features nonlinearities (Pockels coefficint of ~350pm/V) larger than any other materials, its unique challenges for EO-transduction and our progress on thin-film integration [1].

Quantum computers, especially those with superconducting qubits, are limited by the radio frequency (RF) bottleneck between cryogenic processors and room temperature electronics. Replacing RF-links with optical fibres could facilitate hybrid systems using RF-qubits for computation and optical qubits for communication. Achieving efficient electro-optical (EO) transduction requires materials with low losses, strong nonlinearities, and tight electromagnetic confinement. While lithium niobate is standard, this talk explores high-k strontium titanate as a promising alternative, boasting a high Pockels coefficient (~350 pm/V) [1]. In this talk we will discuss our recent progress on thin-film SrTiO3.


[1] Ulrich, A. et al. Engineering high pockels coefficients in thin-film strontium titanate for cryogenic quantum electro-optic applications. arXiv preprint (2025).

https://doi.org/10.48550/arXiv.2502.14349

CV:

Christian Haffner is a Principal Member of Technical Staff and the first to receive Imec's tenure track. Imec is a world-leading research and innovation center in nanoelectronics and digital technologies. Christian's tenure project investigates the fundamental limits of electro-optical devices for classical and quantum applications – or in simple words how small can a light switch be made. This research will eventually allow optical communication to happen at shorter and shorter distances even down to the chip-level. The quality of this research effort is confirmed by the competitive ERC starting grant being awarded to support his research. In 2019, he joined the 5-year Branco-Weiss Fellowship program. He did his Postdoc research on nano-scale optomechanical switches at NIST, Gaithersburg and ETH, Zurich. He earned his Ph.D. degree from ETH Zurich in 2018, which was recognized with the ETH Medal and Hans-Eggenberger Prize. His PhD research focused on using plasmonics as an active electro-optic device technology. He

Seminar of the IPQ

received his B.Sc. and M.Sc. degree in electrical engineering from the Karlsruhe Institute of Technology (Germany) in 2012 and in 2013, respectively. He was the top-ranked student in his master class. During his study, he received a scholarship from the German National Academic Foundation. His research has appeared in high-impact journals such as Nature, Nature Photonics, Science and Nano Letters. His publications have been highlighted by news outlets like the OSA's Optics and Photonics News and the IEEE Spectrum.