Broadband Slow Light in a Photonic Crystal Line Defect Waveguide

Wolfgang Freude and Jürg Leuthold

Institute of High-Frequency and Quantum Electronics (IHQ), University of Karlsruhe, Germany

Universität Karlsruhe (TH)

Institut für Hochfrequenztechnik und Quantenelektronik (IHQ) http://www.ihq.uni-karlsruhe.de

> Photonics BW e.V. Arbeitskreis "Optische Kommunikation" 20. Oktober 2006, Ulm

Acknowledgements

Many thanks to all who have contributed to the content presented here:

Jan-Michael Brosi

who did the actual work and presented it at the OSA Topical Meeting on Slow and Fast Light (SL'06) Washington (DC), USA, July 23–26, 2006, Paper MD6, Christian Koos

for the contour-optimized ultracompact bends and the meander nanowire, ECOC'06 Cannes, September 24–28, 2006, Paper Tu1.4.6,

and

Alexander Yu. Petrov, Manfred Eich

Technische Universität Hamburg-Harburg

This work was supported by the

- DFG in the framework of the Priority Program SP 1113 "Photonic Crystals" and within the CFN Project A 3.1, and by the
- Deutsche Telekom Stiftung.

SOI Delay Lines with Bent Nanowires and Cascaded Resonators

Koos, C.; Poulton, C.; Jacome, L.; Zimmermann, L.; Leuthold, J.; Freude, W.: Ideal trajectory for ultracompact low-loss waveguide bends. ECOC'06 Paper Tu1.4.6

56 all-pass filt., $R = 6.5 \,\mu$ m, $t_g = 520 \,\mathrm{ps}$, 1 Gbit/s, $600 \times$ 150 μ m 100 coupled resonant opt. waveguides, $R = 6.5 \,\mu$ m, $t_g = 500 \,\mathrm{ps}$, 5 Gbits/s, 10 bit @ 20 Gbits/s, BER = 10^{-9}

Vlasov, Yu. A.; Xia, F.; Sekaric, L.; Dulkeith, E.; Assefa, S.; Green, W.; O'Boyle, M.; Hamann, H.; McNab, S. J.: Chip-scale all-optical group delay. OSA'06 Paper FThL1 (IBM Watson Res. Center)

Phot. BW, 20 Oct 06 Institut für Hochfrequenztechnik und Quantenelektronik (IHQ), Universität Karlsruhe

Absorption, Refractive Index and Group Delay

 $k_0 = \frac{\omega}{c},$ $\overline{n} = n - j n_i,$ $n_g = n + \omega \frac{dn}{d\omega},$

 $E(t,z) \sim e^{j(\omega t - k_0 \overline{n} z)}.$

 $\frac{t_g}{L} = \frac{n_g}{c}$

Phot. BW, 20 Oct 06 Institut für Hochfrequenztechnik und Quantenelektronik (IHQ), Universität Karlsruhe

What is it good for to delay the light?

Potential of photonic crystals (PCs):

- By controlling dispersion, light might be slowed down
- High bandwidth as needed for components in fast communication systems

Applications of slow light in a PC:

- Optical modulators and nonlinear elements with reduced size and power
- Optical buffers and delay lines

Cooperation with Fraunhofer Heinrich Hertz Institute, Berlin

Basic component: Broadband slow light PC waveguide (WG)

- Optical pulse transmission at 4% of speed of light over 1.3 THz
- Effect of disorder on group velocity
- Verification with up-scaled microwave experiment

Outline

- Broadband slow light device W0.75 photonic crystal waveguide Coupling taper
- Verification with microwave experiment Experimental pulse transmission setup Pulse shape and group velocity measurement Comparison to simulation
- Influence of disorder on group velocity Measurement of 3 realizations Numerical study of 19 realizations
- Summary

Outline

- Broadband slow light device W0.75 photonic crystal waveguide Coupling taper
- Verification with microwave experiment Experimental pulse transmission setup Pulse shape and group velocity measurement Comparison to simulation
- Influence of disorder on group velocity Measurement of 3 realizations Numerical study of 19 realizations
- Summary

Broadband Slow Light Device

Design: High-index PC membrane (n = 3.16, $h = 0.27 \mu m$)

→ Broadband low group velocity of $v_g = 0.04 \times c$ for r / a = 0.25, W0.75 line defect, $a = 0.45 \,\mu\text{m}$

Anti-crossing of gap-guided and index-guided modes in PC-WG A. Yu. Petrov and M. Eich, Appl. Phys. Lett. 85, 4866 (2004)

Broadband Slow Light Device

Design: High-index PC membrane (n = 3.16, $h = 0.27 \mu m$)

→ Broadband low group velocity of $v_g = 0.04 \times c$ for r / a = 0.25, W0.75 line defect, $a = 0.45 \,\mu\text{m}$

Anti-crossing of gap-guided and index-guided modes in PC-WG A. Yu. Petrov and M. Eich, Appl. Phys. Lett. 85, 4866 (2004)

Phot. BW, 20 Oct 06 Institut für Hochfrequenztechnik und Quantenelektronik (IHQ), Universität Karlsruhe

Coupling Taper

Coupling Taper

10 🦄

Overall Transmission and Reflection

Coupling strip WG to W0.75:

Losses better than 1.25 dB per interface

Outline

- Broadband slow light device W0.75 photonic crystal waveguide Coupling taper
- Verification with microwave experiment Experimental pulse transmission setup Pulse shape and group velocity measurement Comparison to simulation
- Influence of disorder on group velocity Measurement of 3 realizations Numerical study of 19 realizations
- Summary

Verification with Microwave Experiment

Upscaled structure dimensions by 20,000 (0.4 μ m \rightarrow 8 mm) Downscaled operating frequency by 20,000 (200 THz \rightarrow 10 GHz)

Advantages:

- Very accurate fabrication Equivalent accuracy of 0.5 nm Allows to study disorder
- Very accurate measurement
 equipment
- Flexible and modular setup

Ceramic-filled PTFE, *n* = 3.16 @ 10 GHz

Experimental Setup

Slot antenna to excite waveguide mode near 10 GHz

14 🦯

Experimental Setup

Slot antenna to excite waveguide mode near 10 GHz

Reference measurement: Remove slow light WG section Pulse Amp-Amp-Generator Mixer lifier lifier ウ Detector Oscillo-**Microwave Model** scope PC Waveguide Synthesizer

Pulse Shape and Group Velocity Measurement

16 🥂

Pulse Shape and Group Velocity Measurement

Applications

Delay line

 $C_{Delay-Bandwidth} = T_{Storage} \times B_{Packet}$ Number of stored bits Criteria for PC length: Temporal pulse spreading by chromatic dispersion

18

Modulator

Infiltration of PC-WG with electro-optic polymer Potentially very fast (> 10 GHz) and small (< 1 mm)

Outline

- Broadband slow light device W0.75 photonic crystal waveguide Coupling taper
- Verification with microwave experiment Experimental pulse transmission setup Pulse shape and group velocity measurement Comparison to simulation
- Influence of disorder on group velocity Measurement of 3 realizations Numerical study of 19 realizations
- Summary

Influence of Radial Disorder

Microwave Measurements:

15 Periods of PC-WG, 5% normally distributed radial disorder

Influence of Radial Disorder

Microwave Measurements:

15 Periods of PC-WG, 5% normally distributed radial disorder

Simulations with Finite Integration Technique: Lossless materials

Ensemble average of group velocity increased near $v_g / c = 0.04$, but performance of component is not significantly impaired.

Summary

- Broadband slow light device
 Low v_g in PC-WG away from band edge
 Efficient Coupling Taper
- Microwave pulse transmitted

 v_g / c = 0.04 for 1.3 THz equivalent
 optical pulse bandwidth
 Good agreement with simulations
- Influence of radial disorder
 Ensemble average of v_g increased near v_g / c = 0.04, but:
 Component still performing well

