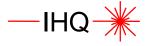
Харьковский государственный технический университет радиоэлектроники Kharkov State Technical University of Radio Electronics

Antenna Array Design Using Microwave Photonics Technology


Wolfgang Freude

I gratefully acknowledge the support of:

G.-A. Chakam V. Hurm University Karlsruhe IAF Freiburg

UNIVERSITY KARLSRUHE (TH)

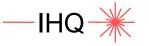
HIGH-FREQUENCY AND QUANTUM ELECTRONICS LABORATORY

Microwave Photonics – Impact and Applications

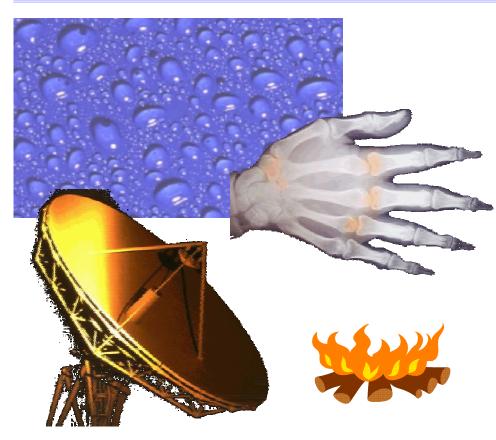
Microwave photonics:	Here: Coherent optical generation of radiation
(MWP)	(temporally sinusoidal electric field) with frequencies
	from several GHz up to the THz-range

2 GHz $\leq f \leq$ 60 GHz:	Electronic generation of spectrally pure microwave signals,
(15 cm $\geq \lambda \geq$ 5 mm)	inexpensive distribution to many receivers via optical fibres,
•	local demodulation, inexpensive electronic amplification
Annelisetienes	Tempetriel communication (makile mkennes office "lest

Applications: Terrestrial communication (mobile phones, office, "last mile"), radar, inter-satellite communication, sensors

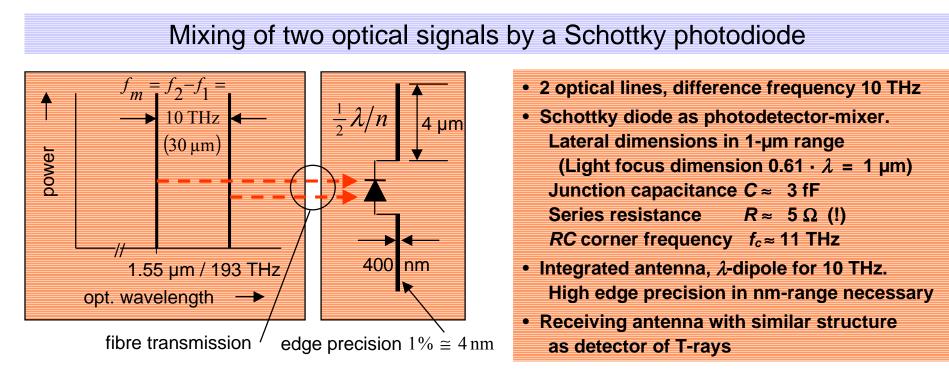

60 GHz ≤ <i>f</i> ≤ 100 GHz:	Electronic signal generation more difficult,
(5 mm ≥ λ ≥ 3 mm)	electronic amplifiers not yet standard products
Applications:	Radar, inter-satellite communication, sensors (distance)

100 GHz $\leq f \leq 10$ THz: Electronic signal generation uneconomical or impossible, (3 mm $\geq \lambda \geq 30$ µm) no electronic amplifiers available


Applications: Radar, imaging, sensors, medical diagnostics

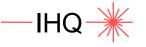
UNIVERSITY KARLSRUHE (TH) HIGH-FREQUENCY AND QUANTUM ELECTRONICS LABORATORY

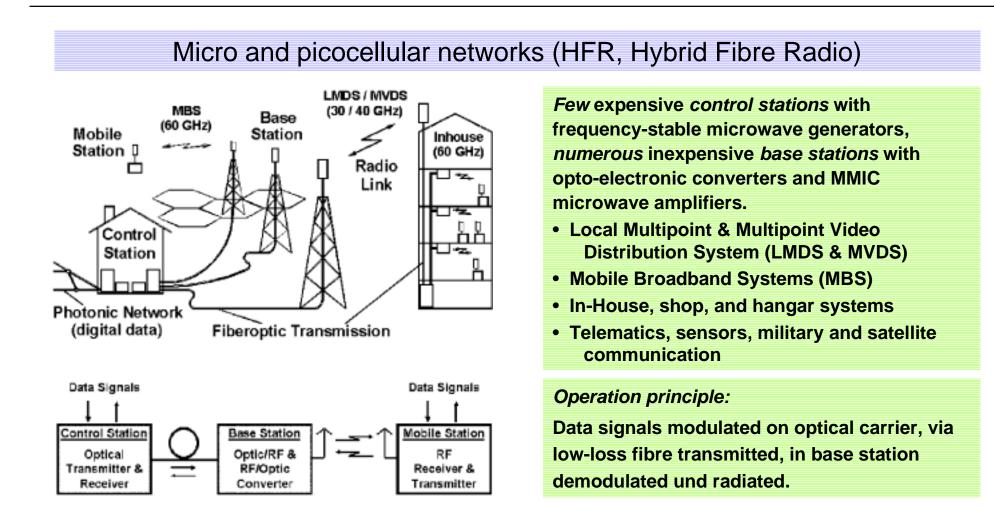
Quality control, medical diagnostics, gas spectroscopy

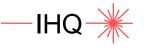

- Humidity (absorption lines 0.6 ... 2 THz, CLEO'98 CTuB5, Opt. Lett. 14 (1989) 1128): production of food
- Dermatology: Structure of burned skin without biopsy
- Tomography (Opt. Lett. 22 (1997) 904)
- T-rays replace Roentgen rays (X-rays): Imaging of "invisible" objects Inspection of pallets Airport safety measures, drug detection
- Analysis of flames and gases (toxicity, Fourier spectrum)
- Quality control: Holes in plastic parts, plastics for car production
- Radar applications (measurement of reflection)

HIGH-FREQUENCY AND QUANTUM ELECTRONICS LABORATORY

Mon, September 6, 1999

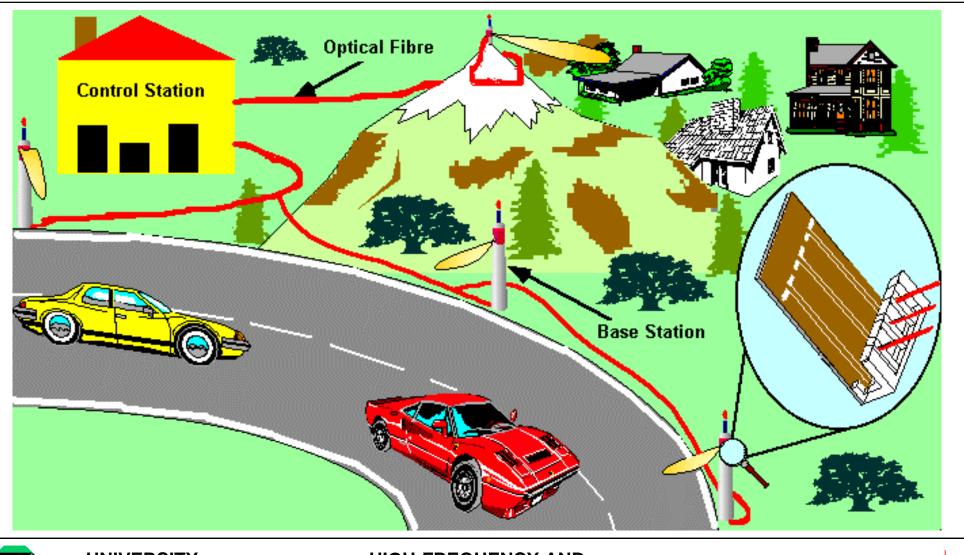

Technological Problems and Challenges


- Electrochem. nano-structuring of Schottky PD: Substrate n-Si; metal (e.g. Pb); junction C; series R
- Corrosion and passivation, accuracy, edge precision, and transmission line loss (type e.g. coplanar)


UNIVERSITY KARLSRUHE (TH)

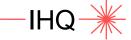
HIGH-FREQUENCY AND QUANTUM ELECTRONICS LABORATORY

HIGH-FREQUENCY AND QUANTUM ELECTRONICS LABORATORY

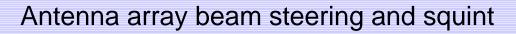

Mon, September 6, 1999

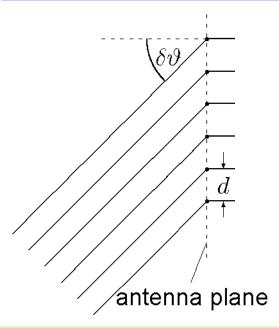
UNIVERSITY

KARLSRUHE (TH)


Wolfgang Freude

Example of HFR Control and Base Stations




HIGH-FREQUENCY AND QUANTUM ELECTRONICS LABORATORY

Mon, September 6, 1999

Wolfgang Freude

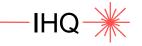
- Problems with RF beamforming network (BFN):
- High losses, high dispersion, interference with microwave transm. lines and fields, bulky, complicated mechanical arrangement

- Antenna array modelled by linear array of point sources (•, `grating' constant d), $\delta \varphi = 0$
- Propagation in 1st diffraction order direction, tilted from normal $\vartheta = 90^{\circ}$ by $\delta \vartheta$
- Well known diffraction formula $\sin(\delta \vartheta) = \lambda_m / d$

• With arbitrary $\delta \varphi$ at •, 0th order beam direction tilted by:

$$\sin(\delta\vartheta) = \frac{\lambda_m}{d} \frac{\delta\varphi}{2\pi} = \frac{c}{\omega_m} \frac{\delta\varphi}{d}$$

- If subcarrier f_m varies with time *t*: beam squint $\delta \vartheta(t)$ for $\delta \varphi = \text{const}_{\star}$
- No squint even with wide bandwidth signal, if


$$\delta \varphi \sim \omega_m$$

for all ω_m !

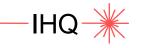
UNIVERSITY KARLSRUHE (TH)

HIGH-FREQUENCY AND QUANTUM ELECTRONICS LABORATORY

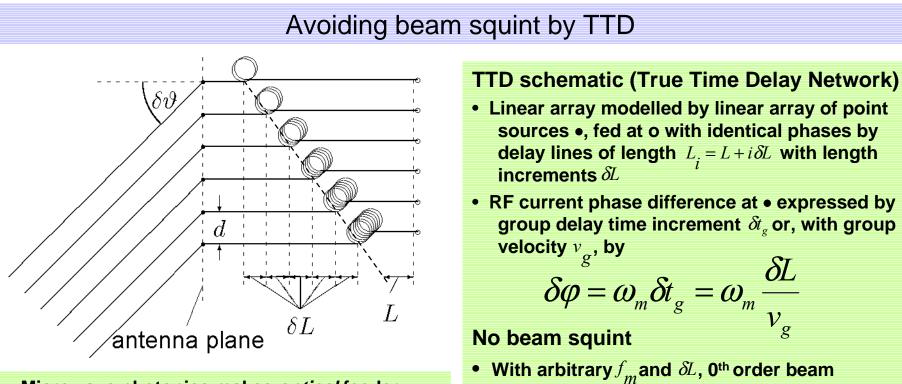
Recipe for RF transmission and optical beamforming network

fibre transmission, length L

Beauties of optical TTD


- Low volume, light, inexpensive
- Very low loss, very low dispersion

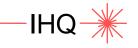
- 2 optical lines, difference frequency $f_m = 20 \,\text{GHz}$
- RF modulation signal transferred to one of the optical lines
- Transmit by optical single-mode fibre
- Detect original RF signal from optical carrier by mixing modulated and unmodulated line
- Mixing by detecting optical power with photodetector (quadratic demodulator, but no sum frequency!)
- Photocurrent contains the IF $f_m = f_2 f_1$
- Amplify the photocurrent
- Radiate resulting signal by each antenna element
- Adjust the beamforming network by the lengths *L* of the optical fibres, either mechanically, or optically


UNIVERSITY KARLSRUHE (TH)

HIGH-FREQUENCY AND QUANTUM ELECTRONICS LABORATORY

Mon, September 6, 1999

Wolfgang Freude


- Microwave photonics makes optical feeder network possible, greatly reduces problems of a true time delay (TTD) network:
- Low losses, low dispersion, not bulky, no interference with microw, transm, lines & fields
- direction tilted by

$$\sin(\delta\vartheta) = \frac{\lambda_m}{d} \frac{\delta\varphi}{2\pi} = \frac{c}{\omega_m} \frac{\delta\varphi}{d} = \frac{c}{\nu_g} \frac{\delta L}{d}$$

UNIVERSITY KARLSRUHE (TH)

HIGH-FREQUENCY AND QUANTUM ELECTRONICS LABORATORY

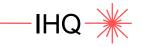
Mon, September 6, 1999

RF Signal Fibre Transmission

Details of RF transmission over dispersive single-mode fibre

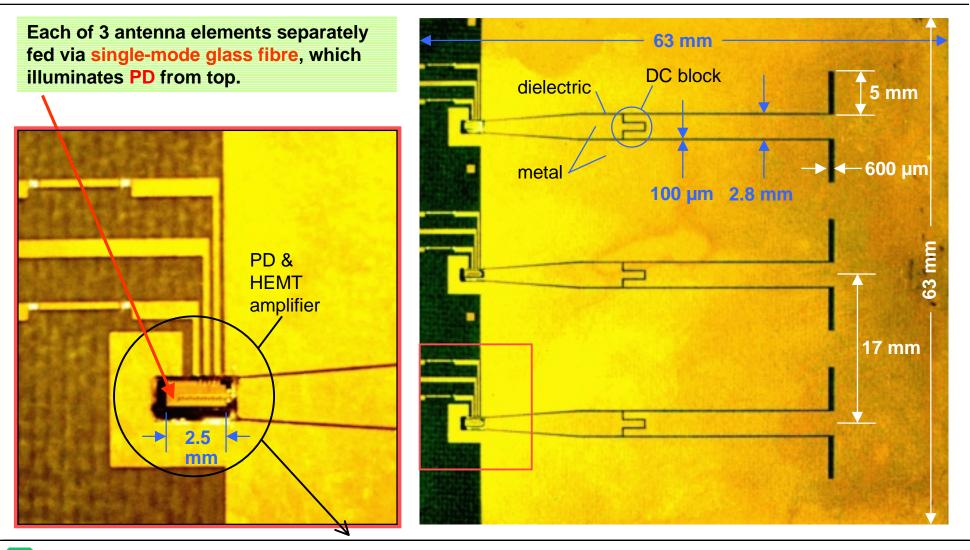
Transfer function of opt. transm. fibre, length L_i : $\tilde{h}_i(f) = \exp[-j\beta_i(\omega)L_i]$ Feeds opt. receivers \rightarrow RF drive of antenna elem. Prop. const. β , group delay time $t_g/L = 5\mu s/km$, chromatic dispersion C = 17 ps/(km nm): $\beta_{i} \approx \beta(\omega_{0}) + (\omega - \omega_{0}) \frac{t_{g}}{L} - \frac{(\omega - \omega_{0})^{2}}{2} \frac{\lambda_{0}^{2}}{2\pi c} C$ Fibre length incr. (a) RF mod. freq. $f_m = 20$ GHz: $\delta L_{\text{max}} = \frac{v_g}{c} d = \frac{2}{3} \frac{\lambda_m}{2} = \frac{15}{3} \text{ mm} = 5 \text{ mm}$ Group delay time increment: $\delta t_{g \max} = \frac{\delta L_{\max}}{v_c} = \frac{d}{c} = \frac{\lambda_m}{2c} = \frac{1}{2f_m} = 25 \text{ ps}$

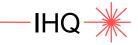
Chrom. delay time err. for spectr. width
$$\Delta f = f_m$$
:
 $\Delta f = 20 \text{ GHz}, \ \Delta = \frac{(1.55 \mu \text{m})^2}{c} \Delta f = 0.16 \text{ nm}$
 $\delta t_{gC} = C \delta L_{\text{max}} \Delta \lambda = 14 \text{ fs} = 0.6 \times 10^{-3} \delta t_{g \text{ max}}$


Summary:

Chromatic dispersion unimportant for OBFN

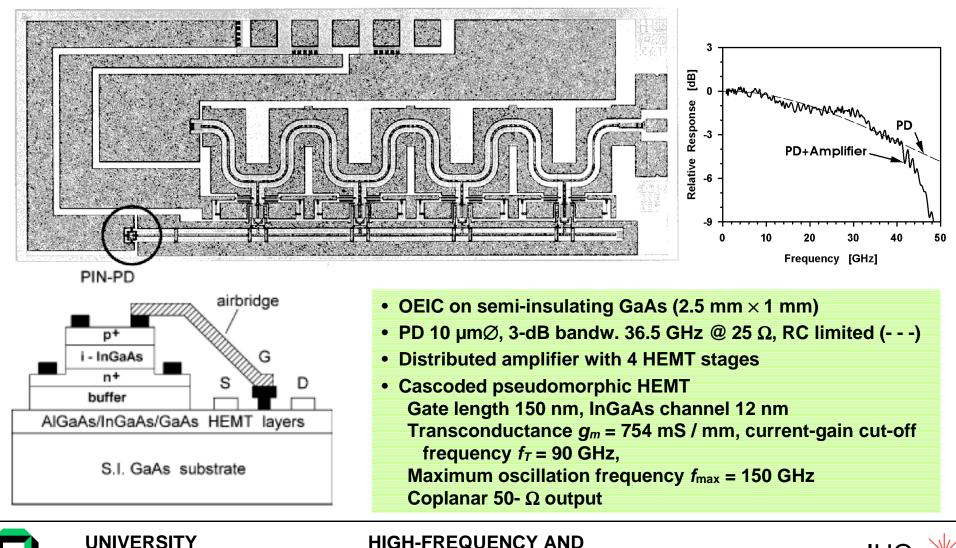
Fibre output spectrum from transfer function : $\ddot{a}_{L}(f) = \breve{h}(f) \left[\delta(f - f_1) + \delta(f - f_2) \right]$ PD detects opt. power (quadr. demodul. for f_m , no optical sum frequency!), RF current i(t): $i(t) \propto \left\langle \left| F^{-1} \{ \breve{a}_L(f) \} \right|^2 \right\rangle \propto \cos(\omega_m t - \omega_m t_g)$ $\varphi_i \propto \omega_m L_i$


HIGH-FREQUENCY AND **ELECTRONICS LABORATORY** QUANTUM

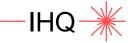

Mon, September 6, 1999

UNIVERSITY

λ -Dipole Antenna with Optical Feeder at 20 GHz

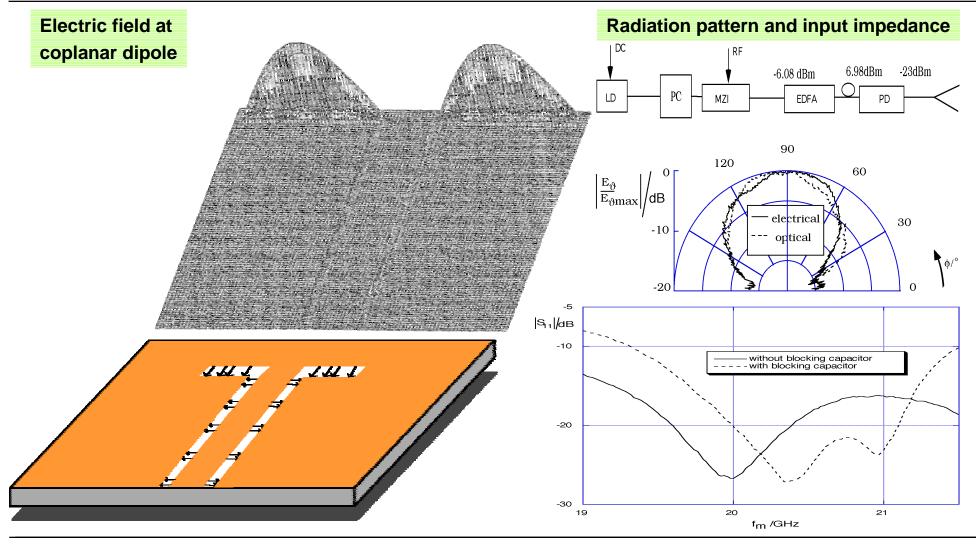


Mon, September 6, 1999

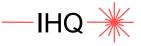

UNIVERSITY

KARLSRUHE (TH)

HEMT Photoreceiver (IAF, Hurm et al. ECOC 1998)


HIGH-FREQUENCY AND QUANTUM ELECTRONICS LABORATORY

Mon, September 6, 1999


KARLSRUHE (TH)

Coplanar λ -dipole at 20 GHz

HIGH-FREQUENCY AND QUANTUM ELECTRONICS LABORATORY

Mon, September 6, 1999

Wolfgang Freude

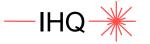
Summary and Outlook

Present state	Microwave photonics	Future work
 Data transmitted to base stations vinnetworks Application of MWP (here: at 20 GHz for radio communication and sense) Mass market for bridging the "last m for connecting subscribers to broad communication networks without metworks without metworks without metworks without metworks without metworks and atterns don't show "bead" Length reconfiguration of fibre feed 	 adband road works a, the am squint" bigher fr Design ar networks Antenna of with refr Problems 	of model system from 20 GHz to equencies, e.g., 40 GHz d test of optical beamforming design for semiconductor substrates active indices near $n = 3,6$: Radiation efficiency Amplifier heat removal

Future Terahertz Photonics

• Design of THz transm. lines with edge precision in the 4-nm region on semicond. substrates; losses

Design and investigation of photo-sensitive Schottky diodes


Antenna design

UNIVERSITY KARLSRUHE (TH)

spatial beam tracking

HIGH-FREQUENCY AND QUANTUM ELECTRONICS LABORATORY

