Silicon-Organic hybrid Fabrication platform for Integrated circuits

Vision & Aim

In the SOFI project, new active optical waveguides and integrated optoelectronic circuits based on a novel silicon-organic hybrid technology are introduced. The technology is based on the low-cost CMOS process technology for fabrication of the optical waveguides - allowing for the convergence of electronics with optics. It is complemented by an organic layer that brings in new functionalities so far not available in silicon. Recent experiments have shown that such a technology can boost the signal processing in silicon far beyond 100 Gbit/s - which corresponds to a tripling of the state-of-the-art bitrate.

SOFI focuses on a proof-of-concept implementation of ultra-fast, ultra-low energy optical phase modulator waveguides such as needed in optical communications. These devices will ultimately be used to demonstrate an integrated circuit enabling the aggregation of low-bitrate electrical signals into a 100 Gbit/s OFDM data-stream having low energy consumption.

However, the SOFI technology is even more fundamental. By varying the characteristics of the organic layer one may also envision new sensing applications for environment and medicine.

The suggested approach is practical and disruptive. It combines the silicon CMOS technology and its standardized processes with the manifold possibilities offered by novel organic materials. This way, for instance, the processing speed limitations inherent in silicon are overcome, and an order-of-magnitude improvement can be achieved. More importantly, the new technology provides the lowest power consumption. The potential for low power consumption is attributed to the tiny dimensions of the devices and to the fact, that optical switching is performed in the highly nonlinear cladding organic material rather than in silicon.
Main Objectives
1. Development of a silicon-organic hybrid (SOH) integrated optics platform
 - Overcome silicon related limitations such as the missing electro-optic effect
 - Deal with all technological aspects such as deposition of organics, poling, metallization & prototype packaging
2. Realization of EO phase modulator with 100 GHz electro-optic bandwidth at 1550 nm
 - This will ultimately increase optical processing speeds beyond today’s limits of silicon
3. Demonstration of integrated optical circuit for higher order signal modulation formats at 100 Gbit/s
 - Mach Zehnder modulator configuration
 - Aiming for 50 Gbit/s QPSK, 100 Gbit/s OFDM in system application scenario
4. Look into silicon-organic hybrid technology for other purposes than data / telecom applications
5. Benchmarking with respect to other data / telecom technologies
 - Evaluate potential of organic material with respect to inorganic material (i.e. chalcogenides)
 - Comparison to state-of-the-art LiNbO3 modulators

Technical Approach and Achievements

The SOFI project demonstrated the world’s first high-speed (>10 GHz) silicon electro-optic modulator based on the Pockels effect. To confirm its performance, data transmission at 42.7 Gbps with a bit-error-ratio (BER) smaller than 3×10^{-9} has been shown. Above 2 GHz, the frequency response is essentially flat (less than 3dB decrease between 2 GHz and 60 GHz) suggesting that data rates could be extended well beyond the 42.7 Gbit/s limit of our equipment. Moreover, this response is wavelength-independent over the C-band.

The SOFI project demonstrated ultra-low power consumption phase shifters based on liquid crystals useful for adjusting integrated circuits for higher order modulation formats.

For these accomplishments the interplay of SOFI partners is crucial and is described in the brief summary below.

To guide SOFI to address actual challenges of commercial relevance AIT has identified the system specifications and component requirements for the SOFI silicon organic hybrid (SOH) modulators. These activities took into account current standardization efforts, recent advances in 100 Gb/s and beyond high speed transmission systems as well as 10 Gb/s and beyond access networks which all rely on the generation of advanced modulation formats (Figure 1). These advances represent a promising context for the application of the SOFI SOH as a low-cost and high performance technology capable to provide modulator components, meeting the specifications of new generation high speed optical transmission interfaces.

Design of the optical waveguides and high-speed RF-electrodes is led by Karlsruhe Institute of Technology (KIT). During this core development stage, simulations and design decisions have been made, which determine the performance of the SOH modulators. The devices owe their exceptional properties to so-called strip-loaded slot (socket) waveguides, see Figure 2. Characterization and performance analysis
(system experiments) have been done at KIT leading to the result summarized in the box above. In addition the SOH concept is extended further by making use of liquid crystals for phase shifters needed to adjust photonic integrated circuits.

> Organic crystal cladding: *Rainbow Photonics* has developed new techniques for the deposition of single-crystalline electro-optic organic thin films on silicon chips.

Several organic crystalline materials and deposition techniques are being tested for this purpose. Melt growth has been found in particular promising for the aims of SOFI, due to the possibility of filling nanostructures like slot waveguides with less than 100-nm in size.

> Polymer cladding: *GigOptix-Helix*’ main contributions are the provision of the electro-optic polymers, by coordinating the exchange of sample material and work instructions between GigOptix Bothell and the consortium, as well as the exploitation and dissemination activities. Furthermore, *GO* contributed to the identification of emerging applications. After having enabled the deposition of EO polymers while filling the narrow slot of the waveguide, see next figure, we currently focus on processing steps for the poling of the polymer (aligning molecules to obtain the Pockel’s effect)

> Inorganic cladding: To evaluate the potential of organic materials with respect to inorganic materials *CUDOS (University of Sydney)* is currently looking into the deposition of chalcogenides.

To assure the potential of commercial applicability of devices developed in SOFI, *SELEX* addresses packaging and RF
design. One possibility currently pursued is described here: The work flow for the wedge-bonding technique directly in a standard packaging module (Figure 4) consists of three main steps:

1. After the chip has been fixed and glued to the metallic enclosure, the electrodes are bonded to the 50 Ohm load and to the RF input connector. A microstrip alumina transition from coaxial connector to coplanar waveguide electrodes could be adopted.
2. The fibers are aligned to the In/Out grating couplers, glued and UV cured.
3. Finally the cover is mounted on the package and the fibers, passing through it by way of two slits, are fixed with an epoxy resin.

Expected impact

Technical results will come to the benefit of the participating industrial partners and people reading our publications. However, the impact of the project must be seen in the wider context of several European and international incentives in the domain of Silicon Photonics. Among the other projects in the European Silicon Photonics Cluster (see www.siliconphotonics.eu) SOFI will answer the question, whether a silicon organic hybrid platform contributes a viable technology to face today’s global questions on capacity of communication channels (be it long distance connections for the internet or some optical port to connect PCs, servers) and their related energy consumption.

Given the fact that huge microelectronics companies are driving research in this field, SOFI creates know-how especially in Europe in a field where nobody yet can claim leadership.

Considering the almost infinite range of applications which come into view at the moment of convergence between electronics and photonics, SOFI identifies which particular set of applications can be served best by using the silicon organic hybrid approach. In this sense, SOFI is a piece in an ensemble of European projects driving innovation in Silicon Photonics in Europe and thereby creating potential for employment and wealth in general.

Please visit www.sofi-ict.eu!